Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10843386 | Protein Expression and Purification | 2010 | 6 Pages |
Abstract
Riboflavin-binding protein (RBP) is a glycophosphoprotein found in hen eggs. We previously identified the extraordinary characteristic of RBP in reducing bitterness. For a more detailed study on the mode of action and industrial application of this characteristic, we investigated the microbial production of recombinant RBP (rRBP). We constructed a chicken RBP gene expression vector by inserting the RBP cDNA in pNCMO2, the Escherichia coli-Brevibacillus choshinensis shuttle vector. B. choshinensis HPD31 transformants produced 0.8Â g/l of processed and unglycosylated RBP in a soluble form in the culture supernatant. However, the expressed RBP was partially dimerized and monomeric RBP was purified by two step anion-exchange and gel-filtration chromatographies. The purified rRBP elicited bitterness reduction against quinine and caffeine, although it largely lost its riboflavin-binding ability. These results indicated that glycosylation and riboflavin-binding ability are not essential for the bitterness reduction of RBP. In addition, we assessed the usefulness of the Brevibacillus system for the expression and secretion of RBP as a new type of bitterness inhibitor.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Kenji Maehashi, Mami Matano, Makiko Saito, Shigezo Udaka,