Article ID Journal Published Year Pages File Type
10845343 Regulatory Peptides 2005 6 Pages PDF
Abstract
The aim of this study was to investigate the effects of intracerebroventricularly injected glucagon-like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and to elucidate the mechanisms involved. Absolute ethanol was administered through an orogastric cannula 5 min before GLP-1 (1 μg/10 μl) injection. One hour later, the rats were decapitated, their stomachs were removed and scored for mucosal damage. GLP-1 inhibited the ethanol-induced gastric mucosal damage by 92%. Centrally injected atropine sulphate, a muscarinic receptor antagonist (5 μg/10 μl), prevented the gastroprotective effect of GLP-1, while mecamylamine, a nicotinic receptor antagonist (25 μg/10 μl), was ineffective. Peripherally injected atropine methyl nitrate (1 mg/kg) did not change the effect of GLP-1, but mecamylamine (5 mg/kg) blocked it. Cysteamine, a somatostatin depletor (280 mg/kg, s.c.), did not affect the protective activity of GLP-1, while inhibition of nitric oxide (NO) synthesis by l-NAME (3 mg/kg, i.v.) significantly abolished the protective effect of GLP-1 on ethanol-induced gastric mucosal lesions. We conclude that central muscarinic and peripheral nicotinic cholinergic receptors and NO, but not somatostatin, contribute to the protective effect of intracerebroventricularly injected GLP-1 on ethanol-induced gastric mucosal damage.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,