Article ID Journal Published Year Pages File Type
10893 Biomaterials 2005 11 Pages PDF
Abstract

This work explores the effects of elevated temperature on the physical and chemical properties of nanocrystalline silver, and relates it to previously observed thermally induced changes in biological activity [Taylor PL et al. Biomaterials, in press, doi:10.1016/j.biomaterials.2005.05.040]. Microstructural evolution of nanocrystalline silver dressings, heat-treated for 24 h at temperatures from 23 to 110 °C, was studied in detail using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). These analyses indicated that silver nanocrystalline coatings undergo significant changes in structure when exposed to elevated temperature. XRD analysis showed a rapid increase in crystallite size above 75 °C along with decomposition of crystalline silver oxide (Ag2O) at the onset of crystallite growth. SEM imaging showed a loss of fine features and sintering of the structure at elevated temperatures. The XPS data indicated that silver–oxygen bonds disappeared completely, with the initial decomposition occurring between 23 and 37 °C, and total oxygen in the coating decreased from 16–17% to 6.5% over the temperature range of 75–110 °C. A comparison of these results to the data of Taylor et al. [Biomaterials, in press, doi:10.1016/j.biomaterials.2005.05.040] indicates that the unique biological properties of nanocrystalline silver are related to its nanostructure. This should guide future development of therapeutic nanocrystalline silver delivery systems.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,