Article ID Journal Published Year Pages File Type
11001594 Physica A: Statistical Mechanics and its Applications 2019 8 Pages PDF
Abstract
By using a previously established exact characterization of the ground state of random potential systems in the thermodynamic limit, we determine the ground and first excited energy levels of quantum random energy models, discrete and continuous. We rigorously establish the existence of a universal first order quantum phase transition, obeyed by both the ground and the first excited states. The presence of an exponentially vanishing minimal gap at the transition is general but, quite interestingly, the gap averaged over the realizations of the random potential is finite. This fact leaves still open the chance for some effective quantum annealing algorithm, not necessarily based on a quantum adiabatic scheme.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,