Article ID Journal Published Year Pages File Type
11002371 International Journal of Electrical Power & Energy Systems 2019 10 Pages PDF
Abstract
At the stage of planning distributed generation (DG) for a distribution network, the network configuration is a key factor in increasing the DG hosting capacity. The determination of a configuration that maximizes the hosting capacity is a highly complex, nonlinear combinatorial optimization problem. No existing method can yield the global optimal solution for practical-scale networks. Therefore, this paper proposes a scalable optimization method. Specifically, the proposed method enumerates all optimal configurations while simultaneously considering optimal DG placement. The proposed method first optimizes the DG placement for possible partial networks using a second-order cone programming technique. Next, it enumerates possible combinations of the partial networks while avoiding a combinatorial explosion using a highly compressed data structure. Finally, it finds the optimal configurations by exploring solutions over the data structure. In experiments involving a large-scale network containing 235 switches, our enumeration method obtained 1.49×1018 global optimal configurations in 17.1 h. Another powerful feature of our method is that it enables distribution system operators to select the preferred optimal configuration interactively.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,