Article ID Journal Published Year Pages File Type
11002882 Pattern Recognition Letters 2018 9 Pages PDF
Abstract
In recent years, multi-label learning has been increasingly applied to various application areas. As an important pre-processing technique for multi-label learning, multi-label feature selection selects meaningful features to improve classification performance. In this paper, a feature selection method named manifold-based constraint Laplacian score (MCLS) is presented. In MCLS, manifold learning is used to transform logical label space to Euclidean label space, and the similarity between samples is constrained by the corresponding numerical labels. The final selection criterion integrates the influence of both the supervision information and local properties of the data. Experimental results demonstrate the effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,