Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11002924 | ISPRS Journal of Photogrammetry and Remote Sensing | 2018 | 12 Pages |
Abstract
Terrestrial landscape has complex three-dimensional (3D) features that are difficult to extract using traditional methods based on 2D representations. These methods often relegate such features to raster or metric-based (two-dimensional) representations based on Digital Surface Models (DSM) or Digital Elevation Models (DEM), and thus are not suitable for resolving morphological and intensity features for fine-scale land cover mapping. Small-footprint LiDAR provides an ideal way for capturing these 3D features. This research develops a novel method of integrating airborne LiDAR derived features and multi-temporal Landsat images to classify land cover types. We tested our approach in Williamson County, Illinois, which has diverse and mixed landscape features. Specifically, our method applied a 3D convolutional neural network (CNN) approach to extract features from LiDAR point clouds by (1) creating an occupancy grid, an intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into the 3D CNN. The extracted features (e.g., morphological and intensity features) from the 3D CNN were finally combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. Visual interpretation from both hyper-resolution photos and point clouds was used for training and preparation of testing data. The classification results show that our method outperforms a traditional method by 2.65% (from 81.52% to 84.17%) when solely using LiDAR and 2.19% (from 90.20% to 92.57%) when combining all available imageries. We demonstrate that our method can effectively extract LiDAR features and improve fine-scale land cover mapping through fusion of complementary types of remote sensing data.
Related Topics
Physical Sciences and Engineering
Computer Science
Information Systems
Authors
Zewei Xu, Kaiyu Guan, Nathan Casler, Bin Peng, Shaowen Wang,