Article ID Journal Published Year Pages File Type
11005596 Journal of Multivariate Analysis 2018 21 Pages PDF
Abstract
This paper studies the asymptotic properties of a sparse linear regression estimator, referred to as broken adaptive ridge (BAR) estimator, resulting from an L0-based iteratively reweighted L2 penalization algorithm using the ridge estimator as its initial value. We show that the BAR estimator is consistent for variable selection and has an oracle property for parameter estimation. Moreover, we show that the BAR estimator possesses a grouping effect: highly correlated covariates are naturally grouped together, which is a desirable property not known for other oracle variable selection methods. Lastly, we combine BAR with a sparsity-restricted least squares estimator and give conditions under which the resulting two-stage sparse regression method is selection and estimation consistent in addition to having the grouping property in high- or ultrahigh-dimensional settings. Numerical studies are conducted to investigate and illustrate the operating characteristics of the BAR method in comparison with other methods.
Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, , , , ,