Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11008134 | Biomaterials | 2019 | 39 Pages |
Abstract
Traditional culture systems for human erythropoiesis lack microenvironmental niches, spatial marrow gradients and dense cellularity rendering them incapable of effectively translating marrow physiology ex vivo. Herein, a bio-inspired three-dimensional (3D) perfusion bioreactor was engineered and inoculated with unselected single donor umbilical cord blood mononuclear cells (CBMNCs). Functional stromal and hematopoietic environments supporting long-term erythropoiesis were generated using defined medium supplemented only with stem cell factor (SCF) and erythropoietin (EPO) at near physiological concentrations. Quantitative 3D image analyses spatiotemporally mapped 21 multi-lineal cell distributions and interactions within multiple microenvironments that secreted extracellular matrix proteins and at least 16 endogenous hematopoietic and stromal growth factors. Tissue-like culture densities (â¥2â109â¯cells/mL), 1000-fold above flask cultures, were attained with continuous erythropoiesis and erythrocyte harvest. We propose this physiologically-relevant system for understanding normal and abnormal erythropoiesis, as well as for drug testing and/or discovery aimed at clinical translation.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Mark C. Allenby, Nicki Panoskaltsis, Asma Tahlawi, Susana Brito Dos Santos, Athanasios Mantalaris,