Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11020266 | Journal of Chromatography B | 2018 | 7 Pages |
Abstract
We introduce a simple online 18O-labeling protocol for protein samples that uses a parallelizing microbore hollow fiber enzyme reactor (mHFER) as an alternative tool for online proteolytic digestion. Online 18O-labeling is performed by separately attaching two mHFERs in parallel to a 10-port switching valve with a high-pressure syringe pump and two syringes containing 16O- or 18O-water. 16O-/18O-labeled peptides are formed in this manner and simultaneously analyzed online using nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) without any residual trypsin activity. The usefulness of a parallel mHFER platform (P-mHFER) in 18O-labeling was tested using both cytochrome C and alpha-1-acid-glycoprotein to verify the incorporation level of two 18O atoms into tryptic peptides and to provide a quantitative assessment with varied mixing ratios. Additionally, our 18O-labeling approach was used to study the serum N-glycoproteome from lung cancer patients and controls to evaluate the applicability of lectin-based quantitative N-glycoproteomics. We successfully quantified 76 peptides (from 62 N-glycoproteins). Nineteen of these peptides from lung cancer serum were up-/down-regulated at least 2.5-fold compared to controls. As a result, the P-mHFER-based online 18O-labeling platform presented here can be a simple and reproducible way to allow quantitative proteomic analysis of diverse proteome samples.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Sun Young Lee, Seonjeong Lee, Sung Bum Park, Ki Young Kim, Jongki Hong, Dukjin Kang,