Article ID Journal Published Year Pages File Type
11021127 Information and Computation 2018 32 Pages PDF
Abstract
Many complex systems can be described by population models, in which a pool of agents interacts and produces complex collective behaviours. We consider the problem of verifying formal properties of the underlying mathematical representation of these models, which is a Continuous Time Markov Chain, often with a huge state space. To circumvent the state space explosion, we rely on stochastic approximation techniques, which replace the large model by a simpler one, guaranteed to be probabilistically consistent. We show how to efficiently and accurately verify properties of random individual agents, specified by Continuous Stochastic Logic extended with Timed Automata (CSL-TA), and how to lift these specifications to the collective level, approximating the number of agents satisfying them using second or higher order stochastic approximation techniques.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,