Article ID Journal Published Year Pages File Type
11023894 Journal of Computational Physics 2019 30 Pages PDF
Abstract
Staggered grids schemes, formulated in internal energy, are commonly used for CFD applications in industrial context. Here, we prove the consistency of a class of high-order Lagrange-Remap staggered schemes for solving the Euler equations in 1D and 2D on Cartesian grids. The main result of the paper is that using an a posteriori internal energy corrector, the Lagrangian schemes are proved to be conservative in mass, momentum and total energy and to be weakly consistent with the 1D Lagrangian formulation of the Euler equations. Extension in 2D is done using directional splitting methods and face-staggering. Numerical examples in both 1D and 2D illustrate the accuracy, the convergence and the robustness of the schemes.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,