Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11023929 | Computerized Medical Imaging and Graphics | 2018 | 19 Pages |
Abstract
Alzheimer's disease is a neurodegenerative process leading to irreversible mental dysfunctions. To date, diagnosis is established after incurable brain structure alterations. The development of new biomarkers is crucial to perform an early detection of this disease. With the recent improvement of magnetic resonance imaging, numerous methods were proposed to improve computer-aided detection. Among these methods, patch-based grading framework demonstrated state-of-the-art performance. Usually, methods based on this framework use intensity or grey matter maps. However, it has been shown that texture filters improve classification performance in many cases. The aim of this work is to improve performance of patch-based grading framework with the development of a novel texture-based grading method. In this paper, we study the potential of multi-directional texture maps extracted with 3D Gabor filters to improve patch-based grading method. We also proposed a novel patch-based fusion scheme to efficiently combine multiple grading maps. To validate our approach, we study the optimal set of filters and compare the proposed method with different fusion schemes. In addition, we also compare our new texture-based grading biomarker with state-of-the-art methods. Experiments show an improvement of AD detection and prediction accuracy. Moreover, our method obtains competitive performance with 91.3% of accuracy and 94.6% of area under a curve for AD detection.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Kilian Hett, Vinh-Thong Ta, José V. Manjón, Pierrick Coupé, Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative,