Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11024710 | Topology and its Applications | 2018 | 17 Pages |
Abstract
We consider inverse limits of sequences of upper semicontinuous set-valued functions fi+1:Ii+1â2Ii (where Ii=[0,1] for each iâN), for which the graph of each bonding function is an arc. We show that any finite tree can be obtained as such an inverse limit, and one for which each bonding function is one of two specified functions. In addition, we discuss trees of height Ï+1 that can be obtained as the inverse limit of such a sequence.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology
Authors
Sina Greenwood, Bradley Windelborn,