Article ID Journal Published Year Pages File Type
11030927 Biochimica et Biophysica Acta (BBA) - Biomembranes 2018 10 Pages PDF
Abstract
It has been widely accepted that the thermally excited motions of the molecules in a cell membrane is the prerequisite for a cell to carry its biological functions. On the other hand, the detailed mapping of the ultrafast picosecond single-molecule and the collective lipid dynamics in a cell membrane remains rather elusive. Here, we report all-atom molecular dynamics simulations of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer over a wide range of temperature. We elucidate a molecular mechanism underlying the lateral lipid diffusion in a cell membrane across the gel, rippled, and liquid phases using an analysis of the longitudinal and transverse current correlation spectra, the velocity auto-correlation functions, and the molecules mean square displacements. The molecular mechanism is based on the anomalous ultrafast vibrational properties of lipid molecules at the viscous-to-elastic crossover. The macroscopic lipid diffusion coefficients predicted by the proposed diffusion model are in a good agreement with experimentally observed values. Furthermore, we unveil the role of water confined at the water-lipid interface in triggering collective vibrations in a lipid bilayer.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,