Article ID Journal Published Year Pages File Type
11299 Biomaterials 2006 9 Pages PDF
Abstract

Dextran hydrogels have been previously investigated as drug delivery vehicles and more recently as macroporous scaffolds; however, the non-cell-adhesive nature of dextran has limited its utility for tissue engineering. To overcome this limitation, macroporous scaffolds of methacrylated dextran (Dex-MA) copolymerized with aminoethyl methacrylate (AEMA) were synthesized, thereby introducing primary amine groups for covalent immobilization of extracellular-matrix-derived peptides. The amino group density for hydrogels copolymerized with 0.5 wt% AEMA was found to be 36.1±0.4 μmol/cm3 by elemental analysis. To further enhance cellular interaction, poly(Dex-MA-co-AEMA) hydrogels were modified with either CRGDS or a mixture of CDPGYIGSR and CQAASIKVAV (1:1, v/v) using sulfo-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC). The immobilized peptide concentration was determined using amino acid analysis at: 2.6±0.9 μmol/cm3 for CRGDS-derived hydrogels and 2.2±0.3 μmol/cm3 plus 1.9±0.2 μmol/cm3 for CDPGYIGSR plus CQAASIKVAV-derived hydrogels, respectively. Cellular interactions of primary embryonic chick dorsal root ganglia (DRGs) were compared on the hydrogels. Cell adhesion and neurite outgrowth on poly(Dex-MA) increased with copolymerization of AEMA and further improved with peptide modification and significantly for CDPGYIGSR/CQAASIKVAV-derived poly(Dex-MA-co-AEMA) hydrogels. Moreover, DRGs penetrated within the first 600 μm of the scaffolds, thereby demonstrating the potential of this scaffold for guided cell and axonal regeneration in vivo.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,