Article ID Journal Published Year Pages File Type
1132838 Transportation Research Part B: Methodological 2006 28 Pages PDF
Abstract
This paper proposes a stochastic quasi-gradient (SQG) based algorithm to solve the off-line stochastic dynamic traffic assignment (DTA) problem that explicitly incorporates randomness in O-D demand, as part of a hybrid DTA deployment framework for real-time operations. The problem is formulated as a stochastic programming DTA model with multiple user classes. Due to the complexities introduced by real-time traffic dynamics and system characteristics, well-behaved properties cannot be guaranteed for the resulting formulation and analytical functional forms that adequately capture traffic realism typically do not exist for the associated objective functions. Hence, a simulation-based SQG method that is applicable for a generalized differentiable (locally Lipschitz) non-convex objective function and non-convex constraint set is proposed to solve the problem. Simulation is used to estimate quasi-gradients that are stochastic to incorporate demand randomness. The solution approach is a generalization of the deterministic DTA solution methodology; under it, deterministic DTA models are special cases. Of practical significance, it provides a robust solution for the field deployment of DTA, or an initial solution for hybrid real-time strategies. The solution algorithm searches a larger feasible domain of the solution space, leading to a potentially more robust and computationally more efficient solution than its deterministic counterparts. These advantages are highlighted through simulation experiments.
Related Topics
Social Sciences and Humanities Decision Sciences Management Science and Operations Research
Authors
, ,