Article ID Journal Published Year Pages File Type
1132898 Transportation Research Part B: Methodological 2007 18 Pages PDF
Abstract

We develop a method for assessing uncertainty about quantities of interest using urban simulation models. The method is called Bayesian melding, and extends a previous method developed for macrolevel deterministic simulation models to agent-based stochastic models. It encodes all the available information about model inputs and outputs in terms of prior probability distributions and likelihoods, and uses Bayes’s theorem to obtain the resulting posterior distribution of any quantity of interest that is a function of model inputs and/or outputs. It is Monte Carlo based, and quite easy to implement. We applied it to the projection of future household numbers by traffic activity zone in Eugene-Springfield, Oregon, using the UrbanSim model developed at the University of Washington. We compared it with a simpler method that uses repeated runs of the model with fixed estimated inputs. We found that the simple repeated runs method gave distributions of quantities of interest that were too narrow, while Bayesian melding gave well calibrated uncertainty statements.

Related Topics
Social Sciences and Humanities Decision Sciences Management Science and Operations Research
Authors
, , ,