Article ID Journal Published Year Pages File Type
11336 Biomaterials 2006 10 Pages PDF
Abstract

Adhesion and proliferation behaviors of bovine aortic endothelial cells (BAECs) were investigated on surfaces micropatterned with peptides using a novel approach. This micropatterning technique allows modification of macroscopic three-dimensional (3D) biomaterials surfaces and exploits the semi-random properties of aerosols and the principles of liquid atomization. The possibility to control cell behaviors on polytetrafluoroethylene (PTFE) surfaces tailored with this micropatterning approach was evaluated. CGRGDS and CWQPPRARI peptides were selected for their adhesive, migration and spreading properties. Culture of BAECs on patterned PTFE showed the possibility of modulating cell behaviors. The study showed that CGRGDS spots with a diameter of 10±2 μm over a background of CWQPPRARI peptides was the most effective combination to enhance endothelialization of PTFE. This micropatterning technique is innovative, easily adaptable, simple, and rapid for covering large 3D areas.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,