Article ID Journal Published Year Pages File Type
1145165 Journal of Multivariate Analysis 2016 22 Pages PDF
Abstract

Gaussian random fields are a powerful tool for modeling environmental processes. For high dimensional samples, classical approaches for estimating the covariance parameters require highly challenging and massive computations, such as the evaluation of the Cholesky factorization or solving linear systems. Recently, Anitescu et al. (2014) proposed a fast and scalable algorithm which does not need such burdensome computations. The main focus of this article is to study the asymptotic behavior of the algorithm of Anitescu et al. (ACS) for regular and irregular grids in the increasing domain setting. Consistency, minimax optimality and asymptotic normality of this algorithm are proved under mild differentiability conditions on the covariance function. Despite the fact that ACS’s method entails a non-concave maximization, our results hold for any stationary point of the objective function. A numerical study is presented to evaluate the efficiency of this algorithm for large data sets.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, , ,