Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1145361 | Journal of Multivariate Analysis | 2015 | 21 Pages |
We consider smooth estimation of the conditional quantile process in linear models using penalized splines. For linear quantile regression problems, usually separate models are fitted at a finite number of quantile levels and then information from different quantiles is combined in interpreting the results. We propose a smoothing method based on penalized splines that computes the conditional quantiles all at the same time. We consider both fixed-knots and increasing-knots asymptotics of the estimator and show that it converges to a multivariate Gaussian process. Simulations show that smoothing can result in more accurate estimation of the conditional quantiles. The method is further illustrated on a real data set. Empirically (although not theoretically) we observe that the crossing quantile curves problem can often disappear using the smoothed estimator.