Article ID Journal Published Year Pages File Type
1145484 Journal of Multivariate Analysis 2015 22 Pages PDF
Abstract

We present a robust Generalized Empirical Likelihood estimator and confidence region for the parameters of an autoregression that may have a heavy tailed heteroscedastic error. The estimator exploits two transformations for heavy tail robustness: a redescending transformation of the error that robustifies against innovation outliers, and weighted least squares instruments that ensure robustness against heavy tailed regressors. Our estimator is consistent for the true parameter and asymptotically normally distributed irrespective of heavy tails.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
,