Article ID Journal Published Year Pages File Type
1145602 Journal of Multivariate Analysis 2015 11 Pages PDF
Abstract

In this paper we define a class of skew-normal linear mixed measurement error models. This class provides a useful generalization of normal linear mixed models with measurement error in fixed effects variables. It is assumed that the random effects, model errors and measurement errors follow a skew-normal distribution, extending usual symmetric normal model in order to avoid data transformation. We find the likelihood function of the observed data, which can be maximized by using standard optimization techniques. Next, an EM-type algorithm is proposed for estimating the parameters that seems to provide some advantages over a direct maximization of the likelihood. Finally, we propose results of a simulation study and an example of real data for illustration.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,