Article ID Journal Published Year Pages File Type
1145956 Journal of Multivariate Analysis 2013 14 Pages PDF
Abstract

Multivariate Laplace distribution is an important stochastic model that accounts for asymmetry and heavier than Gaussian tails, while still ensuring the existence of the second moments. A Lévy process based on this multivariate infinitely divisible distribution is known as Laplace motion, and its marginal distributions are multivariate generalized Laplace laws. We review their basic properties and discuss a construction of a class of moving average vector processes driven by multivariate Laplace motion. These stochastic models extend to vector fields, which are multivariate both in the argument and the value. They provide an attractive alternative to those based on Gaussianity, in presence of asymmetry and heavy tails in empirical data. An example from engineering shows modeling potential of this construction.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, , ,