Article ID Journal Published Year Pages File Type
1146213 Journal of Multivariate Analysis 2013 11 Pages PDF
Abstract

As one of the criteria for comparing variabilities among distributions, the sample range has attracted considerable attention in past decades. In this paper, we establish stochastic comparison results of sample ranges arising from two sets of heterogeneous exponential samples. It is shown that the reversed hazard rate of the sample range is a Schur-convex function of the parameter vector while its distribution function is a Schur-concave function of the vector of logarithms of the coordinates of the parameter vector. Moreover, when samples follow the proportional hazard rates models, we prove that the distribution function of the sample range is Schur-concave in the parameter vector, thereby extending several results known in the literature including Kochar and Rojo (1996) [13], Kochar and Xu (2007) [14] and Zhao and Zhang (2012)  [31].

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, , ,