Article ID Journal Published Year Pages File Type
1146261 Journal of Multivariate Analysis 2012 18 Pages PDF
Abstract

This paper is concerned with the conditional bias and variance of local quadratic regression to the multivariate predictor variables. Data sharpening methods of nonparametric regression were first proposed by Choi, Hall, Roussion. Recently, a data sharpening estimator of local linear regression was discussed by Naito and Yoshizaki. In this paper, to improve mainly the fitting precision, we extend their results on the asymptotic bias and variance. Using the data sharpening estimator of multivariate local quadratic regression, we are able to derive higher fitting precision. In particular, our approach is simple to implement, since it has an explicit form, and is convenient when analyzing the asymptotic conditional bias and variance of the estimator at the interior and boundary points of the support of the density function.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, , ,