Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1146320 | Journal of Multivariate Analysis | 2010 | 15 Pages |
In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption ofαα-mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.