Article ID Journal Published Year Pages File Type
1146405 Journal of Multivariate Analysis 2008 15 Pages PDF
Abstract

Recent sufficient dimension reduction methodologies in multivariate regression do not have direct application to a categorical predictor. For this, we define the multivariate central partial mean subspace and propose two methodologies to estimate it. The first method uses the ordinary least squares. Chi-squared distributed statistics for dimension tests are constructed, and an estimate of the target subspace is consistent and efficient. Moreover, the effects of continuous predictors can be tested without assuming any model. The second method extends Iterative Hessian Transformation to this context. For dimension estimation, permutation tests are used. Simulated and real data examples for illustrating various properties of the proposed methods are presented.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
,