Article ID Journal Published Year Pages File Type
1146527 Journal of Multivariate Analysis 2009 18 Pages PDF
Abstract

We study the distributions of the LASSO, SCAD, and thresholding estimators, in finite samples and in the large-sample limit. The asymptotic distributions are derived for both the case where the estimators are tuned to perform consistent model selection and for the case where the estimators are tuned to perform conservative model selection. Our findings complement those of Knight and Fu [K. Knight, W. Fu, Asymptotics for lasso-type estimators, Annals of Statistics 28 (2000) 1356–1378] and Fan and Li [J. Fan, R. Li, Variable selection via non-concave penalized likelihood and its oracle properties, Journal of the American Statistical Association 96 (2001) 1348–1360]. We show that the distributions are typically highly non-normal regardless of how the estimator is tuned, and that this property persists in large samples. The uniform convergence rate of these estimators is also obtained, and is shown to be slower than n−1/2n−1/2 in case the estimator is tuned to perform consistent model selection. An impossibility result regarding estimation of the estimators’ distribution function is also provided.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,