Article ID Journal Published Year Pages File Type
1146605 Journal of Multivariate Analysis 2011 5 Pages PDF
Abstract

We consider the problem of estimating the marginals in the case where there is knowledge on the copula. If the copula is smooth, it is known that it is possible to improve on the empirical distribution functions: optimal estimators still have a rate of convergence n−1/2n−1/2, but a smaller asymptotic variance. In this paper we show that for non-smooth copulas it is sometimes possible to construct superefficient estimators of the marginals: we construct both a copula and, exploiting the information our copula provides, estimators of the marginals with the rate of convergence logn/nlogn/n.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,