Article ID Journal Published Year Pages File Type
1146698 Journal of Multivariate Analysis 2007 24 Pages PDF
Abstract

Parameters of Gaussian multivariate models are often estimated using the maximum likelihood approach. In spite of its merits, this methodology is not practical when the sample size is very large, as, for example, in the case of massive georeferenced data sets. In this paper, we study the asymptotic properties of the estimators that minimize three alternatives to the likelihood function, designed to increase the computational efficiency. This is achieved by applying the information sandwich technique to expansions of the pseudo-likelihood functions as quadratic forms of independent normal random variables. Theoretical calculations are given for a first-order autoregressive time series and then extended to a two-dimensional autoregressive process on a lattice. We compare the efficiency of the three estimators to that of the maximum likelihood estimator as well as among themselves, using numerical calculations of the theoretical results and simulations.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis