Article ID Journal Published Year Pages File Type
1146789 Journal of Multivariate Analysis 2007 31 Pages PDF
Abstract

The functional autoregressive model is a Markov model taylored for data of functional nature. It revealed fruitful when attempting to model samples of dependent random curves and has been widely studied along the past few years. This article aims at completing the theoretical study of the model by addressing the issue of weak convergence for estimates from the model. The main difficulties stem from an underlying inverse problem as well as from dependence between the data. Traditional facts about weak convergence in non-parametric models appear: the normalizing sequence is not an , a bias term appears. Several original features of the functional framework are pointed out.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis