Article ID Journal Published Year Pages File Type
1146893 Journal of Multivariate Analysis 2011 11 Pages PDF
Abstract

We consider regression models with multiple correlated responses for each design point. Under the null hypothesis, a linear regression is assumed. For the least-squares residuals of this linear regression, we establish the limit of the partial sums. This limit is a projection on a certain subspace of the reproducing Kernel Hilbert space of a multivariate Brownian motion. Based on this limit, we propose a significance test of Kolmogorov–Smirnov type to test the null hypothesis and show that this result can be used to study a change-point problem in the case of linear profile data (panel data). We compare our proposed method, which does not rely on any distributional assumptions, with the likelihood ratio test in a simulation study.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,