Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1146945 | Journal of Multivariate Analysis | 2008 | 20 Pages |
It is well-known that the univariate generalized Pareto distributions (GPD) are characterized by their peaks-over-threshold (POT) stability. We extend this result to multivariate GPDs.It is also shown that this POT stability is asymptotically shared by distributions which are in a certain neighborhood of a multivariate GPD. A multivariate extreme value distribution is a typical example.The usefulness of the results is demonstrated by various applications. We immediately obtain, for example, that the excess distribution of a linear portfolio with positive weights ai, i≤d, is independent of the weights, if (U1,…,Ud) follows a multivariate GPD with identical univariate polynomial or Pareto margins, which was established by Macke [On the distribution of linear combinations of multivariate EVD and GPD distributed random vectors with an application to the expected shortfall of portfolios, Diploma Thesis, University of Würzburg, 2004, (in German)] and Falk and Michel [Testing for tail independence in extreme value models. Ann. Inst. Statist. Math. 58 (2006) 261–290]. This implies, for instance, that the expected shortfall as a measure of risk fails in this case.