Article ID Journal Published Year Pages File Type
1147059 Journal of Multivariate Analysis 2008 14 Pages PDF
Abstract

In this article, copulas associated to multivariate conditional distributions in an Archimedean model are characterized. It is shown that this popular class of dependence structures is closed under the operation of conditioning, but that the associated conditional copula has a different analytical form in general. It is also demonstrated that the extremal copula for conditional Archimedean distributions is no longer the Fréchet upper bound, but rather a member of the Clayton family. Properties of these conditional distributions as well as conditional versions of tail dependence indices are also considered.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis