Article ID Journal Published Year Pages File Type
1147062 Journal of Multivariate Analysis 2008 16 Pages PDF
Abstract

The connections between information pooling and adaptability as well as superefficiency are considered. Separable rules, which figure prominently in wavelet and other orthogonal series methods, are shown to lack adaptability; they are necessarily not rate-adaptive. A sharp lower bound on the cost of adaptation for separable rules is obtained. We show that adaptability is achieved through information pooling. A tight lower bound on the amount of information pooling required for achieving rate-optimal adaptation is given. Furthermore, in a sharp contrast to the separable rules, it is shown that adaptive non-separable estimators can be superefficient at every point in the parameter spaces. The results demonstrate that information pooling is the key to increasing estimation precision as well as achieving adaptability and even superefficiency.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis