Article ID Journal Published Year Pages File Type
1147157 Journal of Multivariate Analysis 2009 9 Pages PDF
Abstract

In this paper, we consider a technique called the generic Principal Component Analysis (PCA) which is based on an extension and rigorous justification of the standard PCA. The generic PCA is treated as the best weighted linear estimator of a given rank under the condition that the associated covariance matrix is singular. As a result, the generic PCA is constructed in terms of the pseudo-inverse matrices that imply a development of the special technique. In particular, we give a solution of the new low-rank matrix approximation problem that provides a basis for the generic PCA. Theoretical aspects of the generic PCA are carefully studied.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,