Article ID Journal Published Year Pages File Type
1147304 Journal of Multivariate Analysis 2006 22 Pages PDF
Abstract

This paper suggests Lévy copulas in order to characterize the dependence among components of multidimensional Lévy processes. This concept parallels the notion of a copula on the level of Lévy measures. As for random vectors, a version of Sklar's theorem states that the law of a general multivariate Lévy process is obtained by combining arbitrary univariate Lévy processes with an arbitrary Lévy copula. We construct parametric families of Lévy copulas and prove a limit theorem, which indicates how to obtain the Lévy copula of a multivariate Lévy process X from the ordinary copula of the random vector Xt for small t.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis