Article ID Journal Published Year Pages File Type
1147309 Journal of Multivariate Analysis 2006 22 Pages PDF
Abstract

An autoregressive-moving average model in which all roots of the autoregressive polynomial are reciprocals of roots of the moving average polynomial and vice versa is called an all-pass time series model. All-pass models generate uncorrelated (white noise) time series, but these series are not independent in the non-Gaussian case. An approximate likelihood for a causal all-pass model is given and used to establish asymptotic normality for maximum likelihood estimators under general conditions. Behavior of the estimators for finite samples is studied via simulation. A two-step procedure using all-pass models to identify and estimate noninvertible autoregressive-moving average models is developed and used in the deconvolution of a simulated water gun seismogram.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis