Article ID Journal Published Year Pages File Type
1147513 Journal of Statistical Planning and Inference 2012 10 Pages PDF
Abstract

Global sensitivity indices play important roles in global sensitivity analysis based on ANOVA high-dimensional model representation. However, few effective methods are available for the estimation of the indices when the objective function is a non-parametric model. In this paper, we explore the estimation of global sensitivity indices of non-parametric models. The main result (Theorem 2.1) shows that orthogonal arrays (OAs) are A-optimality designs for the estimation of ΘM,ΘM, the definition of which can be seen in Section 1. Estimators of global sensitivity indices are proposed based on orthogonal arrays and proved to be accurate for small indices. The performance of the estimators is illustrated by a simulation study.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,