Article ID Journal Published Year Pages File Type
1147515 Journal of Statistical Planning and Inference 2012 13 Pages PDF
Abstract
In this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence {kn} increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m∈N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,