Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1147598 | Journal of Statistical Planning and Inference | 2012 | 11 Pages |
When responses are missing at random, we propose a semiparametric direct estimator for the missing probability and density-weighted average derivatives of a general nonparametric multiple regression function. An estimator for the normalized version of the weighted average derivatives is constructed as well using instrumental variables regression. The proposed estimators are computationally simple and asymptotically normal, and provide a solution to the problem of estimating index coefficients of single-index models with responses missing at random. The developed theory generalizes the method of the density-weighted average derivatives estimation of Powell et al. (1989) for the non-missing data case. Monte Carlo simulation studies are conducted to study the performance of the methods.