Article ID Journal Published Year Pages File Type
1147758 Journal of Statistical Planning and Inference 2011 11 Pages PDF
Abstract
We consider statistical inference for partially linear single-index models (PLSIM) when some linear covariates are not observed, but ancillary variables are available. Based on the profile least-squared estimators of the unknowns, we study the testing problems for parametric components in the proposed models. It is to see whether the generalized likelihood ratio (GLR) tests proposed by Fan et al. (2001) are applicable to testing for the parametric components. We show that under the null hypothesis the proposed GLR statistics follow asymptotically the χ2-distributions with the scale constants and the degrees of freedom being independent of the nuisance parameters or functions, which is called the Wilks phenomenon. Simulated experiments are conducted to illustrate our proposed methodology.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,