Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1147908 | Journal of Statistical Planning and Inference | 2009 | 21 Pages |
Abstract
Next, we introduce a generalized skew-tν distribution, which is a special case of the unified multivariate skew-elliptical distribution presented by Arellano-Valle and Azzalini [2006. On the unification of families of skew-normal distributions. Scand. J. Statist. 33, 561-574] and is in fact a three-parameter generalization of Azzalini and Capitanio's [2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J. Roy. Statist. Soc. Ser. B 65, 367-389] univariate skew-tν form. We then use the relationship between the generalized skew-normal and skew-tν distributions to discuss some properties of generalized skew-tν as well as distributions of order statistics from bivariate and trivariate tν distributions. We show that these distributions of order statistics are indeed mixtures of generalized skew-tν distributions, and then use this property to derive explicit expressions for means and variances of these order statistics.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
A. Jamalizadeh, N. Balakrishnan,