Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1148196 | Journal of Statistical Planning and Inference | 2008 | 7 Pages |
Abstract
Classical multivariate methods are often based on the sample covariance matrix, which is very sensitive to outlying observations. One alternative to the covariance matrix is the affine equivariant rank covariance matrix (RCM) that has been studied in Visuri et al. [2003. Affine equivariant multivariate rank methods. J. Statist. Plann. Inference 114, 161-185]. In this article we assume that the covariance matrix is partially known and study how to estimate the corresponding RCM. We use the properties that the RCM is affine equivariant and that the RCM is proportional to the inverse of the regular covariance matrix, and hence reduce the problem of estimating the original RCM to estimating marginal rank covariance matrices. This is a great computational advantage when the dimension of the original data vector is large.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Kristi Kuljus, Dietrich von Rosen,