Article ID Journal Published Year Pages File Type
1148426 Journal of Statistical Planning and Inference 2008 18 Pages PDF
Abstract
One of the fundamental issues in analyzing microarray data is to determine which genes are expressed and which ones are not for a given group of subjects. In datasets where many genes are expressed and many are not expressed (i.e., underexpressed), a bimodal distribution for the gene expression levels often results, where one mode of the distribution represents the expressed genes and the other mode represents the underexpressed genes. To model this bimodality, we propose a new class of mixture models that utilize a random threshold value for accommodating bimodality in the gene expression distribution. Theoretical properties of the proposed model are carefully examined. We use this new model to examine the problem of differential gene expression between two groups of subjects, develop prior distributions, and derive a new criterion for determining which genes are differentially expressed between the two groups. Prior elicitation is carried out using empirical Bayes methodology in order to estimate the threshold value as well as elicit the hyperparameters for the two component mixture model. The new gene selection criterion is demonstrated via several simulations to have excellent false positive rate and false negative rate properties. A gastric cancer dataset is used to motivate and illustrate the proposed methodology.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,