Article ID Journal Published Year Pages File Type
1148458 Journal of Statistical Planning and Inference 2008 21 Pages PDF
Abstract

In this work we present a flexible class of linear models to treat observations made in discrete time and continuous space, where the regression coefficients vary smoothly in time and space. This kind of model is particularly appealing in situations where the effect of one or more explanatory processes on the response present substantial heterogeneity in both dimensions. We describe how to perform inference for this class of models and also how to perform forecasting in time and interpolation in space, using simulation techniques. The performance of the algorithm to estimate the parameters of the model and to perform prediction in time is investigated with simulated data sets. The proposed methodology is used to model pollution levels in the Northeast of the United States.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,