Article ID Journal Published Year Pages File Type
1148551 Journal of Statistical Planning and Inference 2007 12 Pages PDF
Abstract

Weighted methods are an important feature of multiplicity control methods. The weights must usually be chosen a priori, on the basis of experimental hypotheses. Under some conditions, however, they can be chosen making use of information from the data (therefore a posteriori) while maintaining multiplicity control. In this paper we provide: (1) a review of weighted methods for familywise type I error rate (FWE) (both parametric and nonparametric) and false discovery rate (FDR) control; (2) a review of data-driven weighted methods for FWE control; (3) a new proposal for weighted FDR control (data-driven weights) under independence among variables; (4) under any type of dependence; (5) a simulation study that assesses the performance of procedure of point 4 under various conditions.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,