Article ID Journal Published Year Pages File Type
1148640 Journal of Statistical Planning and Inference 2007 14 Pages PDF
Abstract

We compare results for stochastic volatility models where the underlying volatility process having generalized inverse Gaussian (GIG) and tempered stable marginal laws. We use a continuous time stochastic volatility model where the volatility follows an Ornstein–Uhlenbeck stochastic differential equation driven by a Lévy process. A model for long-range dependence is also considered, its merit and practical relevance discussed. We find that the full GIG and a special case, the inverse gamma, marginal distributions accurately fit real data. Inference is carried out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We develop an MCMC algorithm that can be used for a general marginal model.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,