Article ID Journal Published Year Pages File Type
1148931 Journal of Statistical Planning and Inference 2006 18 Pages PDF
Abstract
The Fisher information is intricately linked to the asymptotic (first-order) optimality of maximum likelihood estimators for parametric complete-data models. When data are missing completely at random in a multivariate setup, it is shown that information in a single observation is well-defined and it plays the same role as in the complete-data model in characterizing the first-order asymptotic optimality properties of associated maximum likelihood estimators; computational aspects are also thoroughly appraised. As an illustration, the logistic regression model with incomplete binary responses and an incomplete categorical covariate is worked out.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,